|
@@ -0,0 +1,238 @@
|
|
|
+{
|
|
|
+ "cells": [
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 1,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "import itertools \n",
|
|
|
+ "import pandas as pd\n",
|
|
|
+ "import numpy as np\n",
|
|
|
+ "# from pandas_risk import *\n",
|
|
|
+ "from time import time\n",
|
|
|
+ "import os\n",
|
|
|
+ "\n",
|
|
|
+ "attr = ['gender','race','zip','year_of_birth']\n",
|
|
|
+ "comb_attr = [\n",
|
|
|
+ " ['zip' ,'gender', 'birth_datetime', 'race'], \n",
|
|
|
+ " ['zip', 'gender', 'year_of_birth', 'race'], \n",
|
|
|
+ " ['gender','race','zip'],\n",
|
|
|
+ " ['race','year_of_birth','zip']\n",
|
|
|
+ "]\n",
|
|
|
+ " "
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 2,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "SQL_CONTROLLED=\"SELECT * FROM deid_risk.basic_risk60k\"\n",
|
|
|
+ "dfc = pd.read_gbq(SQL_CONTROLLED,private_key='/home/steve/dev/google-cloud-sdk/accounts/curation-test.json')\n"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 3,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "def risk(**args):\n",
|
|
|
+ " Yi = args['data']\n",
|
|
|
+ " Yi = Yi.fillna(' ')\n",
|
|
|
+ " sizes = args['prop'] if 'prop' in args else np.arange(5,100,5)\n",
|
|
|
+ " FLAG = args['flag'] if 'flag' in args else 'UNFLAGGED'\n",
|
|
|
+ " N = args['num_runs']\n",
|
|
|
+ " if 'cols' in args :\n",
|
|
|
+ " columns = args['cols']\n",
|
|
|
+ " else:\n",
|
|
|
+ " columns = list(set(Yi.columns.tolist()) - set(['person_id']))\n",
|
|
|
+ " p = pd.DataFrame()\n",
|
|
|
+ " y_i= pd.DataFrame({\"group_size\":Yi.groupby(columns,as_index=False).size()}).reset_index()\n",
|
|
|
+ " for index in sizes :\n",
|
|
|
+ " for n in np.repeat(index,N):\n",
|
|
|
+ " \n",
|
|
|
+ " # we will randomly sample n% rows from the dataset\n",
|
|
|
+ " i = np.random.choice(Yi.shape[0],((Yi.shape[0] * n)/100),replace=False)\n",
|
|
|
+ " x_i= pd.DataFrame(Yi).loc[i] \n",
|
|
|
+ " risk = x_i.deid.risk(id='person_id',quasi_id = columns)\n",
|
|
|
+ " x_i = pd.DataFrame({\"group_size\":x_i.groupby(columns,as_index=False).size()}).reset_index()\n",
|
|
|
+ "\n",
|
|
|
+ "\n",
|
|
|
+ " r = pd.merge(x_i,y_i,on=columns,how='inner')\n",
|
|
|
+ " if r.shape[0] == 0 :\n",
|
|
|
+ " continue\n",
|
|
|
+ " r['marketer'] = r.apply(lambda row: (row.group_size_x / np.float64(row.group_size_y)) /np.sum(x_i.group_size) ,axis=1)\n",
|
|
|
+ " r['sample %'] = np.repeat(n,r.shape[0])\n",
|
|
|
+ " r['tier'] = np.repeat(FLAG,r.shape[0])\n",
|
|
|
+ " r['sample marketer'] = np.repeat(risk['marketer'].values[0],r.shape[0])\n",
|
|
|
+ " # r['patient_count'] = np.repeat(r.shape[0],r.shape[0])\n",
|
|
|
+ " r = r.groupby(['sample %','tier','sample marketer'],as_index=False).sum()[['sample %','marketer','sample marketer','tier']]\n",
|
|
|
+ " p = p.append(r)\n",
|
|
|
+ " p.index = np.arange(p.shape[0]).astype(np.int64)\n",
|
|
|
+ " return p\n",
|
|
|
+ " \n",
|
|
|
+ " "
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 4,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": [
|
|
|
+ "from pandas_risk import *\n",
|
|
|
+ "o = pd.DataFrame()\n",
|
|
|
+ "PATH=\"out/experiment-phase-2.xlsx\"\n",
|
|
|
+ "writer = pd.ExcelWriter(PATH,engine='xlsxwriter')\n",
|
|
|
+ "comb_attr = [\n",
|
|
|
+ " ['zip' ,'gender', 'birth_datetime', 'race'], \n",
|
|
|
+ " ['zip', 'gender', 'year_of_birth', 'race'], \n",
|
|
|
+ " ['gender','race','zip'],\n",
|
|
|
+ " ['race','year_of_birth','zip']\n",
|
|
|
+ "]\n",
|
|
|
+ "\n",
|
|
|
+ "for cols in comb_attr :\n",
|
|
|
+ " o = risk(data=dfc,cols=cols,flag='CONTROLLED',num_runs=5)\n",
|
|
|
+ " #\n",
|
|
|
+ " # adding the policy\n",
|
|
|
+ " x = [1* dfc.columns.isin(cols) for i in range(o.shape[0])]\n",
|
|
|
+ " o = o.join(pd.DataFrame(x,columns = dfc.columns))\n",
|
|
|
+ " #\n",
|
|
|
+ " # Write this to excel notebook\n",
|
|
|
+ " o.to_excel(writer,\"-\".join(cols))\n",
|
|
|
+ "# break\n",
|
|
|
+ " \n",
|
|
|
+ "\n",
|
|
|
+ "# p = p.rename(columns={'marketer_x':'sample marketer'})\n",
|
|
|
+ "# p.index = np.arange(p.shape[0]).astype(np.int64)\n",
|
|
|
+ "\n",
|
|
|
+ "writer.save()"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 20,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "data": {
|
|
|
+ "text/html": [
|
|
|
+ "<div>\n",
|
|
|
+ "<style scoped>\n",
|
|
|
+ " .dataframe tbody tr th:only-of-type {\n",
|
|
|
+ " vertical-align: middle;\n",
|
|
|
+ " }\n",
|
|
|
+ "\n",
|
|
|
+ " .dataframe tbody tr th {\n",
|
|
|
+ " vertical-align: top;\n",
|
|
|
+ " }\n",
|
|
|
+ "\n",
|
|
|
+ " .dataframe thead th {\n",
|
|
|
+ " text-align: right;\n",
|
|
|
+ " }\n",
|
|
|
+ "</style>\n",
|
|
|
+ "<table border=\"1\" class=\"dataframe\">\n",
|
|
|
+ " <thead>\n",
|
|
|
+ " <tr style=\"text-align: right;\">\n",
|
|
|
+ " <th></th>\n",
|
|
|
+ " <th>person_id</th>\n",
|
|
|
+ " <th>year_of_birth</th>\n",
|
|
|
+ " <th>month_of_birth</th>\n",
|
|
|
+ " <th>day_of_birth</th>\n",
|
|
|
+ " <th>birth_datetime</th>\n",
|
|
|
+ " <th>race_concept_id</th>\n",
|
|
|
+ " <th>ethnicity_concept_id</th>\n",
|
|
|
+ " <th>location_id</th>\n",
|
|
|
+ " <th>care_site_id</th>\n",
|
|
|
+ " <th>person_source_value</th>\n",
|
|
|
+ " <th>...</th>\n",
|
|
|
+ " <th>gender_source_concept_id</th>\n",
|
|
|
+ " <th>race_source_value</th>\n",
|
|
|
+ " <th>ethnicity_source_value</th>\n",
|
|
|
+ " <th>sex_at_birth</th>\n",
|
|
|
+ " <th>birth_date</th>\n",
|
|
|
+ " <th>race</th>\n",
|
|
|
+ " <th>zip</th>\n",
|
|
|
+ " <th>city</th>\n",
|
|
|
+ " <th>state</th>\n",
|
|
|
+ " <th>gender</th>\n",
|
|
|
+ " </tr>\n",
|
|
|
+ " </thead>\n",
|
|
|
+ " <tbody>\n",
|
|
|
+ " </tbody>\n",
|
|
|
+ "</table>\n",
|
|
|
+ "<p>0 rows × 21 columns</p>\n",
|
|
|
+ "</div>"
|
|
|
+ ],
|
|
|
+ "text/plain": [
|
|
|
+ "Empty DataFrame\n",
|
|
|
+ "Columns: [person_id, year_of_birth, month_of_birth, day_of_birth, birth_datetime, race_concept_id, ethnicity_concept_id, location_id, care_site_id, person_source_value, gender_source_value, gender_source_concept_id, race_source_value, ethnicity_source_value, sex_at_birth, birth_date, race, zip, city, state, gender]\n",
|
|
|
+ "Index: []\n",
|
|
|
+ "\n",
|
|
|
+ "[0 rows x 21 columns]"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ "execution_count": 20,
|
|
|
+ "metadata": {},
|
|
|
+ "output_type": "execute_result"
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "x = [1* dfc.columns.isin(cols) for i in range(o.shape[0])]\n",
|
|
|
+ "o.join(pd.DataFrame(x,columns = dfc.columns))\n"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": 6,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "ename": "NameError",
|
|
|
+ "evalue": "name 'columns' is not defined",
|
|
|
+ "output_type": "error",
|
|
|
+ "traceback": [
|
|
|
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
|
|
+ "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
|
|
+ "\u001b[0;32m<ipython-input-6-8e7b9895361f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mcolumns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
|
|
+ "\u001b[0;31mNameError\u001b[0m: name 'columns' is not defined"
|
|
|
+ ]
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "source": [
|
|
|
+ "columns\n"
|
|
|
+ ]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {},
|
|
|
+ "outputs": [],
|
|
|
+ "source": []
|
|
|
+ }
|
|
|
+ ],
|
|
|
+ "metadata": {
|
|
|
+ "kernelspec": {
|
|
|
+ "display_name": "Python 2",
|
|
|
+ "language": "python",
|
|
|
+ "name": "python2"
|
|
|
+ },
|
|
|
+ "language_info": {
|
|
|
+ "codemirror_mode": {
|
|
|
+ "name": "ipython",
|
|
|
+ "version": 2
|
|
|
+ },
|
|
|
+ "file_extension": ".py",
|
|
|
+ "mimetype": "text/x-python",
|
|
|
+ "name": "python",
|
|
|
+ "nbconvert_exporter": "python",
|
|
|
+ "pygments_lexer": "ipython2",
|
|
|
+ "version": "2.7.15rc1"
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "nbformat": 4,
|
|
|
+ "nbformat_minor": 2
|
|
|
+}
|