Browse Source

bug fix with documentation

Steve Nyemba 6 years ago
parent
commit
25b30d2c2b
2 changed files with 6 additions and 6 deletions
  1. 3 3
      README.md
  2. 3 3
      risk/__init__.py

+ 3 - 3
README.md

@@ -39,10 +39,10 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample
 
     import numpy as np
     import pandas as pd
-    from pandas_risk import *
+    import risk
 
     mydf = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),50),"y":np.random.choice( np.random.randint(1,10),50),"z":np.random.choice( np.random.randint(1,10),50),"r":np.random.choice( np.random.randint(1,10),50)  })
-    print mydf.risk.evaluate()
+    print (mydf.risk.evaluate())
 
 
 
@@ -52,7 +52,7 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample
     #   - Insure the fields are identical in both sample and population
     #
     pop = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),150),"y":np.random.choice( np.random.randint(1,10),150) ,"z":np.random.choice( np.random.randint(1,10),150),"r":np.random.choice( np.random.randint(1,10),150)})
-    mydf.risk.evaluate(pop=pop)
+    print (mydf.risk.evaluate(pop=pop))
 
 
 @TODO:

+ 3 - 3
risk/__init__.py

@@ -43,10 +43,10 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample
 
     import numpy as np
     import pandas as pd
-    from pandas_risk import *
+    import risk
 
     mydf = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),50),"y":np.random.choice( np.random.randint(1,10),50),"z":np.random.choice( np.random.randint(1,10),50),"r":np.random.choice( np.random.randint(1,10),50)  })
-    print mydf.risk.evaluate()
+    print (mydf.risk.evaluate())
 
 
 
@@ -56,7 +56,7 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample
     #   - Insure the fields are identical in both sample and population
     #
     pop = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),150),"y":np.random.choice( np.random.randint(1,10),150) ,"z":np.random.choice( np.random.randint(1,10),150),"r":np.random.choice( np.random.randint(1,10),150)})
-    mydf.risk.evaluate(pop=pop)
+    print (mydf.risk.evaluate(pop=pop))
 
 
 @TODO: