|
@@ -1,259 +0,0 @@
|
|
|
-"""
|
|
|
- Health Information Privacy Lab
|
|
|
- Brad. Malin, Weiyi Xia, Steve L. Nyemba
|
|
|
-
|
|
|
- This framework computes re-identification risk of a dataset assuming the data being shared can be loaded into a dataframe (pandas)
|
|
|
- The framework will compute the following risk measures:
|
|
|
- - marketer
|
|
|
- - prosecutor
|
|
|
- - pitman
|
|
|
-
|
|
|
- References :
|
|
|
- https://www.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/applying-pitmans-sampling-formula-to-microdata-disclosure-risk-assessment.pdf
|
|
|
-
|
|
|
- This framework integrates pandas (for now) as an extension and can be used in two modes :
|
|
|
- Experimental mode
|
|
|
- Here the assumption is that we are not sure of the attributes to be disclosed, the framework will explore a variety of combinations and associate risk measures every random combinations
|
|
|
-
|
|
|
- Evaluation mode
|
|
|
- The evaluation mode assumes the set of attributes given are known and thus will evaluate risk for a subset of attributes.
|
|
|
-
|
|
|
- features :
|
|
|
- - determine viable fields (quantifiable in terms of uniqueness). This is a way to identify fields that can act as identifiers.
|
|
|
- - explore and evaluate risk of a sample dataset against a known population dataset
|
|
|
- - explore and evaluate risk on a sample dataset
|
|
|
- Usage:
|
|
|
- from pandas_risk import *
|
|
|
-
|
|
|
- mydataframe = pd.DataFrame('/myfile.csv')
|
|
|
- resp = mydataframe.risk.evaluate(id=<name of patient field>,num_runs=<number of runs>,cols=[])
|
|
|
- resp = mydataframe.risk.explore(id=<name of patient field>,num_runs=<number of runs>,cols=[])
|
|
|
-
|
|
|
-
|
|
|
- @TODO:
|
|
|
- - Provide a selected number of fields and risk will be computed for those fields.
|
|
|
- - include journalist risk
|
|
|
-
|
|
|
-"""
|
|
|
-import pandas as pd
|
|
|
-import numpy as np
|
|
|
-import logging
|
|
|
-import json
|
|
|
-from datetime import datetime
|
|
|
-import sys
|
|
|
-
|
|
|
-
|
|
|
-@pd.api.extensions.register_dataframe_accessor("risk")
|
|
|
-class deid :
|
|
|
-
|
|
|
- """
|
|
|
- This class is a deidentification class that will compute risk (marketer, prosecutor) given a pandas dataframe
|
|
|
- """
|
|
|
- def __init__(self,df):
|
|
|
- self._df = df.fillna(' ')
|
|
|
-
|
|
|
- def explore(self,**args):
|
|
|
- """
|
|
|
- This function will perform experimentation by performing a random policies (combinations of attributes)
|
|
|
- This function is intended to explore a variety of policies and evaluate their associated risk.
|
|
|
-
|
|
|
- :pop|sample data-frame with population or sample reference
|
|
|
- :field_count number of fields to randomly select
|
|
|
- :strict if set the field_count is exact otherwise field_count is range from 2-field_count
|
|
|
- :num_runs number of runs (by default 5)
|
|
|
- """
|
|
|
-
|
|
|
- pop= args['pop'] if 'pop' in args else None
|
|
|
-
|
|
|
- if 'pop_size' in args :
|
|
|
- pop_size = np.float64(args['pop_size'])
|
|
|
- else:
|
|
|
- pop_size = -1
|
|
|
-
|
|
|
-
|
|
|
- #
|
|
|
- # Policies will be generated with a number of runs
|
|
|
- #
|
|
|
- RUNS = args['num_runs'] if 'num_runs' in args else 5
|
|
|
-
|
|
|
- sample = args['sample'] if 'sample' in args else pd.DataFrame(self._df)
|
|
|
-
|
|
|
- k = sample.columns.size if 'field_count' not in args else int(args['field_count']) +1
|
|
|
- if 'id' in args :
|
|
|
- id = args['id']
|
|
|
- columns = list(set(sample.columns.tolist()) - set([id]))
|
|
|
- else:
|
|
|
- columns = sample.columns.tolist()
|
|
|
- o = pd.DataFrame()
|
|
|
-
|
|
|
- for i in np.arange(RUNS):
|
|
|
- if 'strict' not in args or ('strict' in args and args['strict'] is False):
|
|
|
- n = np.random.randint(2,k)
|
|
|
- else:
|
|
|
- n = args['field_count']
|
|
|
- cols = np.random.choice(columns,n,replace=False).tolist()
|
|
|
- params = {'sample':sample,'cols':cols}
|
|
|
- if pop is not None :
|
|
|
- params['pop'] = pop
|
|
|
- if pop_size > 0 :
|
|
|
- params['pop_size'] = pop_size
|
|
|
-
|
|
|
- r = self.evaluate(**params)
|
|
|
- #
|
|
|
- # let's put the policy in place
|
|
|
- p = pd.DataFrame(1*sample.columns.isin(cols)).T
|
|
|
- p.columns = sample.columns
|
|
|
- o = o.append(r.join(p))
|
|
|
-
|
|
|
- o.index = np.arange(o.shape[0]).astype(np.int64)
|
|
|
-
|
|
|
- return o
|
|
|
- def evaluate(self, **args):
|
|
|
- """
|
|
|
- This function has the ability to evaluate risk associated with either a population or a sample dataset
|
|
|
- :sample sample dataset
|
|
|
- :pop population dataset
|
|
|
- :cols list of columns of interest or policies
|
|
|
- :flag user provided flag for the context of the evaluation
|
|
|
- """
|
|
|
- if 'sample' in args :
|
|
|
- sample = pd.DataFrame(args['sample'])
|
|
|
- else:
|
|
|
- sample = pd.DataFrame(self._df)
|
|
|
-
|
|
|
- if not args or 'cols' not in args:
|
|
|
- cols = sample.columns.tolist()
|
|
|
- elif args and 'cols' in args:
|
|
|
- cols = args['cols']
|
|
|
- flag = 'UNFLAGGED' if 'flag' not in args else args['flag']
|
|
|
- #
|
|
|
- # @TODO: auto select the columns i.e removing the columns that will have the effect of an identifier
|
|
|
- #
|
|
|
- # if 'population' in args :
|
|
|
- # pop = pd.DataFrame(args['population'])
|
|
|
- r = {"flag":flag}
|
|
|
- # if sample :
|
|
|
-
|
|
|
- handle_sample = Sample()
|
|
|
- xi = sample.groupby(cols,as_index=False).size().values
|
|
|
-
|
|
|
- handle_sample.set('groups',xi)
|
|
|
- if 'pop_size' in args :
|
|
|
- pop_size = np.float64(args['pop_size'])
|
|
|
- else:
|
|
|
- pop_size = -1
|
|
|
- #
|
|
|
- #-- The following conditional line is to address the labels that will be returned
|
|
|
- # @TODO: Find a more elegant way of doing this.
|
|
|
- #
|
|
|
- if 'pop' in args :
|
|
|
- r['sample marketer'] = handle_sample.marketer()
|
|
|
- r['sample prosecutor'] = handle_sample.prosecutor()
|
|
|
- r['sample unique ratio'] = handle_sample.unique_ratio()
|
|
|
- r['sample group count'] = xi.size
|
|
|
- else:
|
|
|
- r['marketer'] = handle_sample.marketer()
|
|
|
- r['prosecutor'] = handle_sample.prosecutor()
|
|
|
- r['unique ratio'] = handle_sample.unique_ratio()
|
|
|
- r['group count'] = xi.size
|
|
|
- if pop_size > 0 :
|
|
|
- handle_sample.set('pop_size',pop_size)
|
|
|
- r['pitman risk'] = handle_sample.pitman()
|
|
|
- if 'pop' in args :
|
|
|
- xi = pd.DataFrame({"sample_group_size":sample.groupby(cols,as_index=False).size()}).reset_index()
|
|
|
- yi = pd.DataFrame({"population_group_size":args['pop'].groupby(cols,as_index=False).size()}).reset_index()
|
|
|
- merged_groups = pd.merge(xi,yi,on=cols,how='inner')
|
|
|
- handle_population= Population()
|
|
|
- handle_population.set('merged_groups',merged_groups)
|
|
|
-
|
|
|
- r['pop. marketer'] = handle_population.marketer()
|
|
|
- r['pitman risk'] = handle_population.pitman()
|
|
|
- r['pop. group size'] = np.unique(yi.population_group_size).size
|
|
|
- #
|
|
|
- # At this point we have both columns for either sample,population or both
|
|
|
- #
|
|
|
- r['field count'] = len(cols)
|
|
|
- return pd.DataFrame([r])
|
|
|
-
|
|
|
-class Risk :
|
|
|
- """
|
|
|
- This class is an abstraction of how we chose to structure risk computation i.e in 2 sub classes:
|
|
|
- - Sample computes risk associated with a sample dataset only
|
|
|
- - Population computes risk associated with a population
|
|
|
- """
|
|
|
- def __init__(self):
|
|
|
- self.cache = {}
|
|
|
- def set(self,key,value):
|
|
|
- if id not in self.cache :
|
|
|
- self.cache[id] = {}
|
|
|
- self.cache[key] = value
|
|
|
-
|
|
|
-class Sample(Risk):
|
|
|
- """
|
|
|
- This class will compute risk for the sample dataset: the marketer and prosecutor risk are computed by default.
|
|
|
- This class can optionally add pitman risk if the population size is known.
|
|
|
- """
|
|
|
- def __init__(self):
|
|
|
- Risk.__init__(self)
|
|
|
- def marketer(self):
|
|
|
- """
|
|
|
- computing marketer risk for sample dataset
|
|
|
- """
|
|
|
- groups = self.cache['groups']
|
|
|
- group_count = groups.size
|
|
|
- row_count = groups.sum()
|
|
|
- return group_count / np.float64(row_count)
|
|
|
-
|
|
|
- def prosecutor(self):
|
|
|
- """
|
|
|
- The prosecutor risk consists in determining 1 over the smallest group size
|
|
|
- It identifies if there is at least one record that is unique
|
|
|
- """
|
|
|
- groups = self.cache['groups']
|
|
|
- return 1 / np.float64(groups.min())
|
|
|
- def unique_ratio(self):
|
|
|
- groups = self.cache['groups']
|
|
|
- row_count = groups.sum()
|
|
|
- return groups[groups == 1].sum() / np.float64(row_count)
|
|
|
-
|
|
|
- def pitman(self):
|
|
|
- """
|
|
|
- This function will approximate pitman de-identification risk based on pitman sampling
|
|
|
- """
|
|
|
- groups = self.cache['groups']
|
|
|
- si = groups[groups == 1].size
|
|
|
- u = groups.size
|
|
|
- alpha = np.divide(si , np.float64(u) )
|
|
|
- f = np.divide(groups.sum(), np.float64(self.cache['pop_size']))
|
|
|
- return np.power(f,1-alpha)
|
|
|
-
|
|
|
-class Population(Sample):
|
|
|
- """
|
|
|
- This class will compute risk for datasets that have population information or datasets associated with them.
|
|
|
- This computation includes pitman risk (it requires minimal information about population)
|
|
|
- """
|
|
|
- def __init__(self,**args):
|
|
|
- Sample.__init__(self)
|
|
|
-
|
|
|
- def set(self,key,value):
|
|
|
- Sample.set(self,key,value)
|
|
|
- if key == 'merged_groups' :
|
|
|
-
|
|
|
- Sample.set(self,'pop_size',np.float64(value.population_group_size.sum()) )
|
|
|
- Sample.set(self,'groups',value.sample_group_size)
|
|
|
- """
|
|
|
- This class will measure risk and account for the existance of a population
|
|
|
- :merged_groups {sample_group_size, population_group_size} is a merged dataset with group sizes of both population and sample
|
|
|
- """
|
|
|
- def marketer(self):
|
|
|
- """
|
|
|
- This function requires
|
|
|
- """
|
|
|
- r = self.cache['merged_groups']
|
|
|
- sample_row_count = r.sample_group_size.sum()
|
|
|
- #
|
|
|
- # @TODO : make sure the above line is size (not sum)
|
|
|
- # sample_row_count = r.sample_group_size.size
|
|
|
- return r.apply(lambda row: (row.sample_group_size / np.float64(row.population_group_size)) /np.float64(sample_row_count) ,axis=1).sum()
|
|
|
-
|
|
|
-
|