123456789101112131415161718192021222324252627 |
- import numpy as np
- m = [[0.0, 4.5], [0.0, 4.5], [11.6, 4.4], [12.2, 4.3], [1.4, 3.9], [1.4, 3.9], [2.5, 3.8], [0.1, 3.8], [0.5, 5.1], [0.7, 5.2], [0.7, 5.1], [0.0, 4.6], [0.0, 4.6]]
- m = np.transpose(np.array(m))
- xu_ = np.mean(m[1,:])
- yu_ = np.mean(m[0,:])
- xr_ = np.sqrt(np.var(m[0,:]))
- yr_ = np.sqrt(np.var(m[1,:]))
- #
- # -- normalizing the matrix before computing covariance
- #
- mn = np.array([list( (m[0,:]-xu_)/xr_),list( (m[1,:]-yu_)/yr_)])
- cx = np.cov(mn)
- n = m.shape[0]
- x = np.array([2.5,3.1])
- u = np.array([xu_,yu_])
- d = np.matrix(x - u)
- d.shape = (n,1)
- a = (2*(np.pi)**(n/2))*np.linalg.det(cx)**0.5
- b = np.exp(-0.5*np.transpose(d) * (cx**-1)*d)
- from scipy.stats import multivariate_normal
- xo= multivariate_normal.pdf(x,u,cx)
- yo= (b/a)[0,0]
- for row in np.transpose(m):
- print ",".join([str(value) for value in row])
- #-- We are ready to perform anomaly detection ...
|