Browse Source

adding notebooks (test/examples

Steve Nyemba 1 year ago
parent
commit
715e40407a
5 changed files with 770 additions and 0 deletions
  1. 169 0
      notebooks/bigquery.ipynb
  2. 155 0
      notebooks/mongodb.ipynb
  3. 150 0
      notebooks/mysql.ipynb
  4. 157 0
      notebooks/postgresql.ipynb
  5. 139 0
      notebooks/sqlite.ipynb

+ 169 - 0
notebooks/bigquery.ipynb

@@ -0,0 +1,169 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Writing to Google Bigquery\n",
+    "\n",
+    "1. Insure you have a Google Bigquery service account key on disk\n",
+    "2. The service key location is set as an environment variable **BQ_KEY**\n",
+    "3. The dataset will be automatically created within the project associated with the service key\n",
+    "\n",
+    "The cell below creates a dataframe that will be stored within Google Bigquery"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "100%|██████████| 1/1 [00:00<00:00, 5440.08it/s]\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "['data transport version ', '2.0.0']\n"
+     ]
+    }
+   ],
+   "source": [
+    "#\n",
+    "# Writing to Google Bigquery database\n",
+    "#\n",
+    "import transport\n",
+    "from transport import providers\n",
+    "import pandas as pd\n",
+    "import os\n",
+    "\n",
+    "PRIVATE_KEY = os.environ['BQ_KEY'] #-- location of the service key\n",
+    "DATASET = 'demo'\n",
+    "_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
+    "bqw = transport.factory.instance(provider=providers.BIGQUERY,dataset=DATASET,table='friends',context='write',private_key=PRIVATE_KEY)\n",
+    "bqw.write(_data,if_exists='replace') #-- default is append\n",
+    "print (['data transport version ', transport.__version__])\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Reading from Google Bigquery\n",
+    "\n",
+    "The cell below reads the data that has been written by the cell above and computes the average age within a Google Bigquery (simple query). \n",
+    "\n",
+    "- Basic read of the designated table (friends) created above\n",
+    "- Execute an aggregate SQL against the table\n",
+    "\n",
+    "**NOTE**\n",
+    "\n",
+    "It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Downloading: 100%|\u001b[32m██████████\u001b[0m|\n",
+      "Downloading: 100%|\u001b[32m██████████\u001b[0m|\n",
+      "           name  age\n",
+      "0    James Bond   55\n",
+      "1  Steve Rogers  150\n",
+      "2  Steve Nyemba   44\n",
+      "--------- STATISTICS ------------\n",
+      "   _counts   f0_\n",
+      "0        3  83.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "\n",
+    "import transport\n",
+    "from transport import providers\n",
+    "import os\n",
+    "PRIVATE_KEY=os.environ['BQ_KEY']\n",
+    "pgr = transport.instance(provider=providers.BIGQUERY,dataset='demo',table='friends',private_key=PRIVATE_KEY)\n",
+    "_df = pgr.read()\n",
+    "_query = 'SELECT COUNT(*) _counts, AVG(age) from demo.friends'\n",
+    "_sdf = pgr.read(sql=_query)\n",
+    "print (_df)\n",
+    "print ('--------- STATISTICS ------------')\n",
+    "print (_sdf)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
+    "\n",
+    "**NOTE**:\n",
+    "\n",
+    "The auth_file is intended to be **JSON** formatted"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "{'dataset': 'demo', 'table': 'friends'}"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "\n",
+    "{\n",
+    "    \n",
+    "    \"dataset\":\"demo\",\"table\":\"friends\"\n",
+    "}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.7"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}

+ 155 - 0
notebooks/mongodb.ipynb

@@ -0,0 +1,155 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Writing to mongodb\n",
+    "\n",
+    "Insure mongodb is actually installed on the system, The cell below creates a dataframe that will be stored within mongodb"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "2.0.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "#\n",
+    "# Writing to mongodb database\n",
+    "#\n",
+    "import transport\n",
+    "from transport import providers\n",
+    "import pandas as pd\n",
+    "_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
+    "mgw = transport.factory.instance(provider=providers.MONGODB,db='demo',collection='friends',context='write')\n",
+    "mgw.write(_data)\n",
+    "print (transport.__version__)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Reading from mongodb\n",
+    "\n",
+    "The cell below reads the data that has been written by the cell above and computes the average age within a mongodb pipeline. The code in the background executes an aggregation using **db.runCommand**\n",
+    "\n",
+    "- Basic read of the designated collection **find=\\<collection>**\n",
+    "- Executing an aggregate pipeline against a collection **aggreate=\\<collection>**\n",
+    "\n",
+    "**NOTE**\n",
+    "\n",
+    "It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "           name  age\n",
+      "0    James Bond   55\n",
+      "1  Steve Rogers  150\n",
+      "--------- STATISTICS ------------\n",
+      "   _id  _counts  _mean\n",
+      "0    0        2  102.5\n"
+     ]
+    }
+   ],
+   "source": [
+    "\n",
+    "import transport\n",
+    "from transport import providers\n",
+    "mgr = transport.instance(provider=providers.MONGODB,db='foo',collection='friends')\n",
+    "_df = mgr.read()\n",
+    "PIPELINE = [{\"$group\":{\"_id\":0,\"_counts\":{\"$sum\":1}, \"_mean\":{\"$avg\":\"$age\"}}}]\n",
+    "_sdf = mgr.read(aggregate='friends',pipeline=PIPELINE)\n",
+    "print (_df)\n",
+    "print ('--------- STATISTICS ------------')\n",
+    "print (_sdf)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
+    "\n",
+    "**NOTE**:\n",
+    "\n",
+    "The auth_file is intended to be **JSON** formatted"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "{'host': 'klingon.io',\n",
+       " 'port': 27017,\n",
+       " 'username': 'me',\n",
+       " 'password': 'foobar',\n",
+       " 'db': 'foo',\n",
+       " 'collection': 'friends',\n",
+       " 'authSource': '<authdb>',\n",
+       " 'mechamism': '<SCRAM-SHA-256|MONGODB-CR|SCRAM-SHA-1>'}"
+      ]
+     },
+     "execution_count": 1,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "{\n",
+    "    \"host\":\"klingon.io\",\"port\":27017,\"username\":\"me\",\"password\":\"foobar\",\"db\":\"foo\",\"collection\":\"friends\",\n",
+    "    \"authSource\":\"<authdb>\",\"mechamism\":\"<SCRAM-SHA-256|MONGODB-CR|SCRAM-SHA-1>\"\n",
+    "}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.7"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}

+ 150 - 0
notebooks/mysql.ipynb

@@ -0,0 +1,150 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Writing to MySQL\n",
+    "\n",
+    "1. Insure MySQL is actually installed on the system, \n",
+    "2. There is a database called demo created on the said system\n",
+    "\n",
+    "The cell below creates a dataframe that will be stored within postgreSQL"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "2.0.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "#\n",
+    "# Writing to PostgreSQL database\n",
+    "#\n",
+    "import transport\n",
+    "from transport import providers\n",
+    "import pandas as pd\n",
+    "_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
+    "myw = transport.factory.instance(provider=providers.MYSQL,database='demo',table='friends',context='write',auth_file=\"/home/steve/auth-mysql.json\")\n",
+    "myw.write(_data,if_exists='replace') #-- default is append\n",
+    "print (transport.__version__)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Reading from MySQL\n",
+    "\n",
+    "The cell below reads the data that has been written by the cell above and computes the average age within a MySQL (simple query). \n",
+    "\n",
+    "- Basic read of the designated table (friends) created above\n",
+    "- Execute an aggregate SQL against the table\n",
+    "\n",
+    "**NOTE**\n",
+    "\n",
+    "It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "           name  age\n",
+      "0    James Bond   55\n",
+      "1  Steve Rogers  150\n",
+      "2  Steve Nyemba   44\n",
+      "--------- STATISTICS ------------\n",
+      "   _counts   avg\n",
+      "0        3  83.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "\n",
+    "import transport\n",
+    "from transport import providers\n",
+    "myr = transport.instance(provider=providers.POSTGRESQL,database='demo',table='friends',auth_file='/home/steve/auth-mysql.json')\n",
+    "_df = myr.read()\n",
+    "_query = 'SELECT COUNT(*) _counts, AVG(age) from friends'\n",
+    "_sdf = myr.read(sql=_query)\n",
+    "print (_df)\n",
+    "print ('--------- STATISTICS ------------')\n",
+    "print (_sdf)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
+    "\n",
+    "**NOTE**:\n",
+    "\n",
+    "The auth_file is intended to be **JSON** formatted"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "{'host': 'klingon.io',\n",
+       " 'port': 3306,\n",
+       " 'username': 'me',\n",
+       " 'password': 'foobar',\n",
+       " 'database': 'demo',\n",
+       " 'table': 'friends'}"
+      ]
+     },
+     "execution_count": 1,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "{\n",
+    "    \"host\":\"klingon.io\",\"port\":3306,\"username\":\"me\",\"password\":\"foobar\",\n",
+    "    \"database\":\"demo\",\"table\":\"friends\"\n",
+    "}"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.7"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}

+ 157 - 0
notebooks/postgresql.ipynb

@@ -0,0 +1,157 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Writing to PostgreSQL\n",
+    "\n",
+    "1. Insure PostgreSQL is actually installed on the system, \n",
+    "2. There is a database called demo created on the said system\n",
+    "\n",
+    "The cell below creates a dataframe that will be stored within postgreSQL"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "2.0.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "#\n",
+    "# Writing to PostgreSQL database\n",
+    "#\n",
+    "import transport\n",
+    "from transport import providers\n",
+    "import pandas as pd\n",
+    "_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
+    "pgw = transport.factory.instance(provider=providers.POSTGRESQL,database='demo',table='friends',context='write')\n",
+    "pgw.write(_data,if_exists='replace') #-- default is append\n",
+    "print (transport.__version__)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Reading from PostgreSQL\n",
+    "\n",
+    "The cell below reads the data that has been written by the cell above and computes the average age within a PostreSQL (simple query). \n",
+    "\n",
+    "- Basic read of the designated table (friends) created above\n",
+    "- Execute an aggregate SQL against the table\n",
+    "\n",
+    "**NOTE**\n",
+    "\n",
+    "It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "           name  age\n",
+      "0    James Bond   55\n",
+      "1  Steve Rogers  150\n",
+      "2  Steve Nyemba   44\n",
+      "--------- STATISTICS ------------\n",
+      "   _counts   avg\n",
+      "0        3  83.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "\n",
+    "import transport\n",
+    "from transport import providers\n",
+    "pgr = transport.instance(provider=providers.POSTGRESQL,database='demo',table='friends')\n",
+    "_df = pgr.read()\n",
+    "_query = 'SELECT COUNT(*) _counts, AVG(age) from friends'\n",
+    "_sdf = pgr.read(sql=_query)\n",
+    "print (_df)\n",
+    "print ('--------- STATISTICS ------------')\n",
+    "print (_sdf)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
+    "\n",
+    "**NOTE**:\n",
+    "\n",
+    "The auth_file is intended to be **JSON** formatted"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "{'host': 'klingon.io',\n",
+       " 'port': 5432,\n",
+       " 'username': 'me',\n",
+       " 'password': 'foobar',\n",
+       " 'database': 'demo',\n",
+       " 'table': 'friends'}"
+      ]
+     },
+     "execution_count": 1,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "{\n",
+    "    \"host\":\"klingon.io\",\"port\":5432,\"username\":\"me\",\"password\":\"foobar\",\n",
+    "    \"database\":\"demo\",\"table\":\"friends\"\n",
+    "}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.7"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}

+ 139 - 0
notebooks/sqlite.ipynb

@@ -0,0 +1,139 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Writing to SQLite3+\n",
+    "\n",
+    "The requirements to get started are minimal (actually none). The cell below creates a dataframe that will be stored within SQLite 3+"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "2.0.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "#\n",
+    "# Writing to PostgreSQL database\n",
+    "#\n",
+    "import transport\n",
+    "from transport import providers\n",
+    "import pandas as pd\n",
+    "_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
+    "sqw = transport.factory.instance(provider=providers.SQLITE,database='/home/steve/demo.db3',table='friends',context='write')\n",
+    "sqw.write(_data,if_exists='replace') #-- default is append\n",
+    "print (transport.__version__)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Reading from SQLite3+\n",
+    "\n",
+    "The cell below reads the data that has been written by the cell above and computes the average age within a PostreSQL (simple query). \n",
+    "\n",
+    "- Basic read of the designated table (friends) created above\n",
+    "- Execute an aggregate SQL against the table\n",
+    "\n",
+    "**NOTE**\n",
+    "\n",
+    "It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "           name  age\n",
+      "0    James Bond   55\n",
+      "1  Steve Rogers  150\n",
+      "2  Steve Nyemba   44\n",
+      "--------- STATISTICS ------------\n",
+      "   _counts  AVG(age)\n",
+      "0        3      83.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "\n",
+    "import transport\n",
+    "from transport import providers\n",
+    "pgr = transport.instance(provider=providers.SQLITE,database='/home/steve/demo.db3',table='friends')\n",
+    "_df = pgr.read()\n",
+    "_query = 'SELECT COUNT(*) _counts, AVG(age) from friends'\n",
+    "_sdf = pgr.read(sql=_query)\n",
+    "print (_df)\n",
+    "print ('--------- STATISTICS ------------')\n",
+    "print (_sdf)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
+    "\n",
+    "**NOTE**:\n",
+    "\n",
+    "The auth_file is intended to be **JSON** formatted. This is an overkill for SQLite ;-)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "\n",
+    "{\n",
+    "    \"provider\":\"sqlite\",\n",
+    "    \"database\":\"/home/steve/demo.db3\",\"table\":\"friends\"\n",
+    "}\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.7"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}